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THERMAL WAVES IN A SUPERSONIC BOUNDARY l_AYER 
WITH SELF-INDUCED PRESSURE* 

A.I. DERZHAVINA 

The linear problem of temperature perturbation on a flat plate in asuperSOniCStrean 
of gas is considered using the asymptotic theory of plane flow in a boundary layer 

with free interaction. Problem is solved by applying the Fourier transform in the 

longitudinal coordinate. The effect of wall temperature variation on the physical 
characteristics of gas flow in the boundary layer is investigated. Numerical ap- 
plication of the inverse Fourier transform isusedfor determining the effect Of a 
given temperature variation on pressure distribution. 

1. Statement of the problem. Let us consider the supersonic flow of gas at Mach 
number higher than unity over a plate. We use the Cartesian system of coordinates with the 

5 axis directed along the plate, the y aXiS normal to it, and the origin at the point of 
beginning of the perturbed temperature region on the plate. We denote time by t,the velocity 
vector components by u and 21, density by p, pressure by p , temperature by T, and by h the 
first viscosity coefficient. Indices M and w denote parameters in the unperturbed stream and 

at the plate, respectively. 
In the theory of free interaction the motion of gas in steady /l-3/ and unsteady j4-771 

state problems is usually considered in three characteristic regions, viz. the upper region 
where the viscosity and heat conduction effects are small and the flow is irrotational; the 

intermediate region of vortex flow but where the effect of dissipative factors can be neglect- 

ed, and the lower region in direct contact with the body where the flow pattern essentially 

depends on viscosity. Solution of asymptotic equations for the lower region is the most 

difficult. In the first two regions the flow is quasi-steady and only parametrically depend- 
ent on time, while in the lower region it is essentially unstable and defined by equations of 
the boundary layer of a compressible gas whose pressure gradient is not a priori known,and 
has to be determined in the course of the problem solution under conditions of interactionwith 
the external flow. 

In the investigations of unsteady flows in the region of interaction in /4- 7/ it was as- 
sumed that the body surface was thermally insulated and that in the region free of interaction 
large temperature gradients were absent. On these assumptions it is possible to consider den- 
sity and viscosity as constant, and in the layer next to the wall to be determined by the 
solution in the intermediate region. Allowance for gas compressibility in the region of free 
interaction enables us to widen the class of this type of problems that involve wall tempera- 
ture variation. The steady state problem of temperature discontinuity at a plate subjected to 
a supersonic flow of viscous gas was considered in /8/ using the theory of free interaction. 
Patterns of pressure distribution induced by abrupt temperature changes of the plate were also 
determined there. 

Below, we investigate the linear problem of perturbation propagation in an unsteady bound- 
ary layer, induced by temperature perturbation on the plate surface. 

Let US assume that the (gas) specific heat at constant pressure is constant, the Prandtl 
number is unity, and that the coefficients of viscosity A and themlal conductivity kT linearly 
depend on temperature in conformity with Chapman's law 

hlh, = cTIT,, kTik_= = cTiT,, c = const 

Assuming further the gas to be perfect, we can eliminate the temperature from the system 
of equations that define the flow next to the plate and formulate the boundary value problem 
for perturbed density. 

0n the above assumptions we can formulate the equations that define the plane unsteady 
motion of compressible gas in a boundary layer with self-induced pressure, together with bound- 
ary conditions, in terms of transformed dimensionless variables, in the form /9/ 
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y-+00: u-by- s pd.& p-->I 
-co 

5-e --m: u+y, p-to, p--h4 

y = 0: u = 0, 72 = 0, p = pw (z, t) 

il.Z! 

2. Free oscillations. Let us first consider the simpler boundary value problem in 
which the plate temperature is constant, i.e. by setting &,=I in the last of conditions 
(1.2). We shall seek wave solutions periodic in x of the form 

u = y -.-a&Q~+~x& (y), u = &$tQ~+NF (y) (2.1) 
p = ae%Qf+lc't, p = 1 + a&Qt+~% cft (y) 

assuming the perturbation amplitude a to be small. The substitution of expressions (2.1) into 
Eqs.(l.l) and boundary conditions (1.2) together with the modified condition for density at 
the plate, yields the following system of equations and boundary conditions: 

(2.2) 

~G/d~~ - i (8 f 5~) i- ikF + ik = -d@,/+ @@,i&2 _ i (Q + 
kg) 4) = 0 

Y = 0: G (0) = 0, F (0) =tz 0, aI (0) .Yz 0 

Y - m: @ (Y) + 0, G (y) -+ If(ik) 

Furthermore, considering that perturbations must dampen as z--t --co, it is necessary to 
assume that Imk<% The last equation for @ in system (2.2) can be separated, and after the 

substitution of variable z = i%2iizJ~ $(ik)‘$ reduces to the Airy equation. Its solution, which 
satisfies the boundedness condition as y-t co can be straightaway expressed in termsofAiry's 
function cf, (z) = c,, Ai (z) 

TO satisfy the condition for @ f4 when y = 0 it is necessary to satisfy the condition 

Ai ii'/aQ/&?/z) z 0 12.3) 

The case of c0 = 0 corresponds to the problem of propagation of purely mechanical oscil- 
lations, which was considered earlier in /4-66/. If e, +O,constants Q and h- must satisfy 

condition (2.3), which implies the relation i'l,8/k'lz = zn, where z,, are roots of Airy's func- 
tion that lie on the negative part of the real axis. Hence condition (2.3) is a dispersion 
relation that determines the eigenvalues of the considered here boundary value problem. Slit- 
ting plane k along the positive part of the imaginary axis will show that by virtue of the 
assumption that Imk ( 0 and condition (2.3) s/6 <arga <5nf6, i.e. fm8> 0 and the oscil- 
lation amplitude dampens with time. If we introduce the.pbase velocity c = -Q,!k,then--5rtJ6 i: 

argc < -7ni6, i.e. ~ec>O which corresponds to the downstream propagation of waves. 
Substituting the solution for cf, into the first two equations of System (2.2) and Solving 

the obtained system with allowance for the remaining boundary conditions, for the longitudinal 
velocity we obtain 

G(z) = - [CC, -i- -$&]@&'+[I (5) - I(z)] (2.41 

f2.5) 

The numerator in formula f2.5) is a dispersion relation which Was obtained in the invest- 
gation of perturbation propagation in the constant density boundary layer next to the piate 
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/4,6/. If Qand k satisfy that dispersion relation, then cO = 0 and, as expected, formula 
(2.4) come to the solution derived in /6/. 

3, Solution of the linear problem with varying plate temperature. Let us as- 
sume that the plate temperature variation is periodic in time, so that density variation next 

to the plate is defined by the formula 
pw (5, t) = 1 + af?Qf (2) 

where 51 is the dimensionless oscillation frequency, n is a small parameter and function f(z) 

defines the oscillation form. By virtue of the assumption of smallness of parameter a the 

problem can be linearized, representing the solution in the form of expansions in 

u = y + au'+ . ..( v = n&i- . . . . p = 1 + up + . . . , p = up -f- . . . 

The substitution of these expansion into Eqs.(l.l) and boundary conditions (1.2) yields 
for the first approximation functions the following system of equations and boundary condi- 
tions: 

y-+.x:u'~- \: p’ (s, t) (IX, p'-+O 
2, 

y = 0: u' = 0, 2.' = 0, p' = eiNf (2) 

In this system the equation for p' can be separated and integrated independently of the 
remaining, and simple transformations enable us to eliminate p', u' and p‘, and obtain for u' 
the equation 

(3.11 

whose solution will be sought in the form 

p' = eiQf R (5, y), u' = eiQf C/ (2, y), p' =: @at p (z) 

For the determination of function Rwe use the Fourier transform 

(3.2) 

and similar transforms for CJand P. This actually presumes that perturbations of P',u' and 
p’ dampen as X- 00. As the result, we obtain for N* (k,y) an equation which, as previous, 

reduces to the Airy equation after the introduction of the variable i . We represent its 
solution, with allowance for the boundary conditions for density, in the form 

where f* (k) the Fourier transform of function f(z),which defines the form of density oscil- 
lations at the boundary. The inverse transformation yields 

(3.3) 

Dealing similarly with Eq.(3.1) for velocity, and taking into account solution (3.31,we 
obtain for CT* (k. z) the formula 

(3.4) 

Using the boundary condition for velocity as y-00 , we obtain from formula (3.4) the 
Fourier transform for pressure P* (k) and, consequently, also 
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For calculating integral (3.5) in the complex plane it is necessary to know the poles of 
integrands which are determined by the roots of the denominator in @(Q,k). Roots of the ex- 
pression in brackets correspond to eigenvalues in the problem of free mechanical oscillations 
/6/, while the roots of Ai&) = 0 yield eigenvalues in the considered above problem of free 
oscillations in a compressible boundary layer with self-induced pressure. The perturbed li~l- 
steady pressure according to formula (3.2) is determined as follows: 

P' (s, t) = cos Qt He IP (s)l - sin Qt [III [P (s)] (3.6) 

4. The determination of pressure. For further analysis it is advantageous todefine 
function i(r specific form. We specify it in the form of a triangle with parameters n and 
b 

i 

0, J :; 0 

f (ri = 
2P, 05Cz<b 
26 (0 -. 3)/(0 -b), b <, I _ n 
0, 2 2 0 

In this case 

f --&e~kb+“& e-I’- 
1 

@ (2, k) eikx dk 
-in 

(4.1) 

hence the determination of pressure reduces to the calcul.ation in the complex plane k of in- 
tegrals of the form 

J(z)= ~~(~,~~~*kxa~ (4.21 
-m 

For separating the single-valued branch of the integrand we slit plane k along the posi- 
tive part of the imaginary axis /7/. One root of the denominator of the integrand in (4.21 
is obviously h: =0, and the roots of Airy's function Ai(5) are known and lie on the negative 
part of the real axis in the 5 plane and in the k plane, along the ray issuing from the co- 
ordinate origin at angle 5~14. The roots of expression in brackets in <>(~,li) were analyzed 
in detail in /7/ in connection with the problem of a vibrator in a supersonic boundary layer. 
That expression has one root in the fourth quadrant and a denumerable number of roots in the 
second. 

We select the integration path C in the lower half-plane (Fig-l) on the basis of proper- 
ties of roots of the integrand of integral (4.2). This path consists of the real axis segment 
between -Rand R and of an arc of circle of radius R, by-passing the coordinate origin along 
semicircle C, 

of the larger 
Me obtain for 

of radius E. Applying the Cauchy theorem on residues and increasing radius R 
semicircle to infinity while decreasing radius e of the small semicircle to zero, 
.I < 0 

(4.3) 

I(<,*) Ai’(cl*)/Ai (cl*) 

(rk)+ [&* (I - !>jkllil*‘) AI (5,') -t 2il (&*)I 

where j,* is the pole of integrand in the 5 plane, which corresponds to h-,‘ ,and h~(Sl,i;,')~~'"“" 
is the residue of the integrand at point Ei,*. The constant B is the value of the integral 

Over i‘, as the radius E of circle approaches zero. The value of l? is unimportant, since it 
cancels out with the substitution into (4.1) of al.1 three terms appearing in it. 

For calculating integral (4.2) for s>O we apply the method recommendedin /7/ forslmilar 

integrals. Application of the theorem on residues to path C for s>O yields 

J(z).:- H - 2nriC (Q,k,*)P~ +-.I,.(!!. ri (4.4) 

In the case of large li and finite Q> 1 the integrand can be represented in the form of 

series in i 



507 

with coefficients CN, which depend on Q, are determined in terms of known coefficients of 

expansions Ai (0, Ai'(6) and ((5). Integration by part of the series, we obtain the formula 

(4.5) 

R 

Jc (0, +) = - I/%- (1J wr”‘r c (&iy” z*mc3m 
(Zm +5/a) (2m +*j3) + 2 3 + 

m=cJ 
(4.6) 

Fig.1 Fig.2 

This series is rapidly convergent and convenient for computer calculations for R>,l.When 

P<1, it is necessary to alter expansion (4.5) by introducing the variable L= ?JQ , which 
reduces it to the form 

where coefficients C> are formally linked to cN by the relation c;. = QW. The series for 
calculating J,(Q,z) can be obtained form (4.6) by the formal substitution in it of c> for TN. 
As in (4.7), the dependence on 62 appears in this series only in terms of coefficients C'N. 

Finally, the substitution of results of calculations by formulas (4.3), (4.4) and (4.6) 
into formula (4.1) yields 

R (z) =+ {- 2niK (Q, kl*) eih’l’x 
[ 

1 - 5 e -h,‘b * 
‘a_b 

pL’0 

3 
+ (4.8) 

3 (")Jc(%z)- w Jc(O, z-b)+ w J,(Q, I - a, 

0 (z) = 
-t 

I, z>o 
0, z<o 

Pressures calculated by formulas (3.6) and (4.8) for n= 2, b = I, P == land various instants 
of the dimensionless time t= 0, n/4, n/2, 3x14 are shown in Fig.2 by curves l-4, respectively. 

5. Determination of pressure in the steady state case. Formula (4.8) showsthat 
the derived solution parametrically depends on Q. Setting in the input formulas (4.1) and 
(4.2) Q = 0(6 -0). we obtain for the steady state case 

(5.1) I- P/s) 
P(z) = - ____ 

a39 (d/z) { Jo@) - SF Jo (z - b) + &Jo+ 4) 

1 
s b. =3L/‘r 



where roots of the integrand denominator are k,= O, ii, = --IbJ:' = -- I [3"' I‘ (ill,j)J-' ( t‘or CdlCULdf -- 
ing J,,(I) we select in the lower half-plane the same integr'ation path C for .:'.li, When .r :-- (1 
the path consists of two branches C, and C, that lie in the upper half-plane (Fig.1). The> 
comprise segments of the real axis, of the arc of circle of the large radius 12, the slit 
edge, and the arc of circle of the small radius E. Note that as E--r~, we have at the by- 
pass of point k= 0 in (5.1) terms with the singularity 0 (e-l") in each integrals J, (1) in 
(5.1). However the substitution of all three derived integrals into (5.1) cancels these sing- 
ularities, and we obtain for P(z) an expression that contains only residues at point k, and 

integrals along edges of the slit. We can finally write 

3% (Z/s) 
P(f) = ~ 

26;’ 
[i - 0 (z)] erp (bL./‘z) - & [I-8(x-b)]x 

exp (b;" (z -b))+ & [i - e (I - a)] exp (bi" (2 - (I)) - 

26;’ 
3n [ 0 (4 J, (4 - 5 0 (z - b) JR (z - b) + 

&hw&-a)]} 

JR (z) = 3 mr (*/3) I"' dt 

Pressure distribution in the steady state case calculated by formula (5.2) with (I 

b=i is shown in Fig.2 by the dash line. 

= 2 and 

The author thanks O.S. Ryzhov and E.D. Terent'ev for discussing the formulation of this 

problem and of obtained results. 
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